Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 1,1'-Dimethyl-4,4'-bipyridinium bis(tetrafluoridoborate)

Fan Yang, Jian-Cheng Deng, ${ }^{\text {a* }}$ Zhi-Gang Li ${ }^{\text {b }}$ and Jing-Wei $\mathbf{X u}^{\mathrm{b}} \ddagger$

${ }^{\text {a }}$ The College of Chemistry, Xiangtan University, Hunan 411105, People's Republic of China, and ${ }^{\mathbf{b}}$ National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
Correspondence e-mail: djcwye@163.com

Received 17 October 2007; accepted 1 December 2007

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.082 ; w R$ factor $=0.249$; data-to-parameter ratio $=13.7$.

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{BF}_{4}{ }^{-}$, the cation has a centre of symmetry at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond. $\pi-\pi$ interactions, with a shortest atom-to-atom distance of 3.757 (4) \AA, extend the crystal structure into a one-dimensional supramolecular chain.

Related literature

For related literature, see: Dou et al. (2007).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{BF}_{4}{ }^{-}$
$V=762.9(5) \AA^{3}$
$M_{r}=359.87$
$Z=2$
Monoclinic, $P 2_{1} / c$
Mo $K \alpha$ radiation
$a=5.824$ (2) A
$b=8.849$ (3) A
$\mu=0.16 \mathrm{~mm}^{-1}$
$c=14.855$ (6) \AA
$T=293$ (2) K
$\beta=94.825$ (5) $^{\circ}$
$0.26 \times 0.12 \times 0.07 \mathrm{~mm}$

Data collection

Bruker APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SAINT-Plus; Bruker, 2003)
$T_{\text {min }}=0.960, T_{\text {max }}=0.988$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.082 \quad 110$ parameters
$w R\left(F^{2}\right)=0.249 \quad$ H-atom parameters constrained
$S=1.02$
1508 reflections
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work is supported by the Changchun Institute of Applied Chemistry.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2076).

References

Bruker (1998). SMART (Version 5.0) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT-Plus. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.
Dou, Y.-L., Li, Z.-G., Xu, J.-W. \& Zhang, W.-X. (2007). Acta Cryst. E63, o1874o1875.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]
supplementary materials

Acta Cryst. (2008). E64, o253 [doi:10.1107/S1600536807064963]

1,1'-Dimethyl-4,4'-bipyridinium bis(tetrafluoridoborate)

F. Yang, J.-C. Deng, Z.-G. Li and J.-W. Xu

Comment

Dou et al. have reported a structure, synthesized by in situ reaction under hydrothermal conditions, in which pyridine nitrogen atoms are covalently bonded to methyl groups and the counterion are $\mathrm{ClO}_{4}{ }^{-}$anions (Dou et al., 2007). Here we report the structure of the title compound, which is essentially isomorphous with the perchlorate compound.

The title compound, shown in Fig. 1, consists of 1,1'-dimethyl-4,4'-bipyridinium cations and tetrafluoroborate anions. There is a centre of symmetry at the mid-point of the $\mathrm{C}-\mathrm{C}$ bond linking the two pyridine rings. The two pyridine rings are exactly parallel by symmetry, and essentially coplanar.

In the crystal structure, there are $\pi \cdots \pi$ interactions between pyridine rings at (x, y, z) and $(1-x, 1-y,-z)$, with the shortest atom-to-atom distance of 3.757 (4) \AA, which leads to a one-dimensional supramolecular chain running in the c-direction. (Fig. 2).

Experimental

Compound (I) was solvothermally prepared from a reaction mixture of $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}(0.2 \mathrm{mmol}), 4,4^{\prime}$-bipyridine (0.1 mmol), methanol (3 ml) and distilled water (8 ml) in a molar ratio of $2: 1: 740: 4444$; the pH value was adjusted to 4.6 with trimethylamine and acetic acid. The mixture was stirred for 20 min at room temperature and then sealed in a Teflon-lined stainless steel autoclave with a 23 ml capacity at 423 K for 72 h . After cooling to room temperature, colourless block-shaped crystals were obtained; these were washed with deionized water, filtered, and dried in air (yield 54% based on Cu).

Refinement

H atoms were placed geometrically and included in the refinement with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})\right.$ $\left.=1.2 U_{\mathrm{eq}}(\mathrm{C}, N)\right]$, using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ for $s p^{2} \mathrm{C}$ and $0.96 \AA$ for methyl C .

Figures

Fig. 1. A view of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) $-x, 1-y,-z$].

supplementary materials

Fig. 2. Perspective view along the c axis of the packing of the title compound. For the sake of clarity, H atoms have been omitted. Dashed lines indicated $\pi \cdots \pi$ interactions.

1,1'-Dimethyl-4,4'-bipyridinium bis(tetrafluoroborate)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{BF}_{4}^{-}$	$F_{000}=364$
$M_{r}=359.87$	$D_{\mathrm{x}}=1.567 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2 / c$	Mo $K \alpha$ radiation
Hall symbol: -P 2 ybc	$\lambda=0.71073 \AA$
$a=5.824(2) \AA$	Cell parameters from 852 reflections
$b=8.849(3) \AA$	$\theta=2.7-21.8^{\circ}$
$c=14.855(6) \AA$	$\mu=0.16 \mathrm{~mm}^{-1}$
$\beta=94.825(5)^{\circ}$	$T=293(2) \mathrm{K}$
$V=762.9(5) \AA^{3}$	Block, white
	$0.26 \times 0.12 \times 0.07 \mathrm{~mm}$

Data collection

Bruker APEX CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SAINT-Plus; Bruker, 2003)
$T_{\text {min }}=0.960, T_{\text {max }}=0.988$
3923 measured reflections

1508 independent reflections
843 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=26.1^{\circ}$
$\theta_{\text {min }}=2.7^{\circ}$
$h=-7 \rightarrow 7$
$k=-7 \rightarrow 10$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.082$
$w R\left(F^{2}\right)=0.249$
$S=1.02$
1508 reflections
110 parameters

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1212 P)^{2}+0.6686 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.027$
$\Delta \rho_{\max }=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.4587(6)$	$0.7384(4)$	$0.0761(2)$	$0.0562(10)$
C1	$0.3344(8)$	$0.6666(6)$	$0.1356(3)$	$0.0630(13)$
H1	0.3694	0.6820	0.1972	0.076^{*}
C2	$0.1604(8)$	$0.5727(6)$	$0.1078(3)$	$0.0595(12)$
H2	0.0809	0.5225	0.1505	0.071^{*}
C3	$0.0967(7)$	$0.5493(4)$	$0.0157(2)$	$0.0467(10)$
C4	$0.2275(9)$	$0.6266(5)$	$-0.0436(3)$	$0.0638(13)$
H4	0.1937	0.6151	-0.1056	0.077^{*}
C5	$0.4030(9)$	$0.7182(6)$	$-0.0129(3)$	$0.0667(13)$
H5	0.4872	0.7684	-0.0542	0.080^{*}
C6	$0.6523(9)$	$0.8417(6)$	$0.1092(4)$	$0.0796(15)$
H6A	0.5918	0.9252	0.1411	0.119^{*}
H6B	0.7278	0.8789	0.0587	0.119^{*}
H6C	0.7609	0.7871	0.1491	0.119^{*}
B	$0.8454(9)$	$0.5924(6)$	$0.3254(3)$	$0.0587(14)$
F1	$0.7199(7)$	$0.7234(4)$	$0.3254(3)$	$0.1178(14)$
F2	$0.7561(6)$	$0.5028(4)$	$0.2566(2)$	$0.0984(12)$
F3	$1.0703(5)$	$0.6258(4)$	$0.3118(2)$	$0.0984(12)$

$\begin{array}{lllll}\text { F4 } & 0.8324(6) & 0.5244(5) & 0.4071(2) & 0.1099(14)\end{array}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.059(2)$	$0.059(2)$	$0.052(2)$	$0.0147(18)$	$0.0171(17)$	$0.0058(17)$
C1	$0.064(3)$	$0.085(3)$	$0.042(2)$	$0.005(3)$	$0.017(2)$	$0.002(2)$
C2	$0.067(3)$	$0.077(3)$	$0.037(2)$	$0.003(2)$	$0.022(2)$	$0.012(2)$
C3	$0.060(2)$	$0.048(2)$	$0.034(2)$	$0.0214(18)$	$0.0180(17)$	$0.0048(16)$
C4	$0.087(3)$	$0.073(3)$	$0.034(2)$	$0.003(3)$	$0.017(2)$	$0.007(2)$
C5	$0.090(3)$	$0.070(3)$	$0.044(2)$	$0.005(3)$	$0.026(2)$	$0.010(2)$
C6	$0.072(3)$	$0.088(4)$	$0.080(4)$	$0.001(3)$	$0.012(3)$	$-0.002(3)$
B	$0.063(3)$	$0.068(3)$	$0.048(3)$	$-0.008(3)$	$0.020(2)$	$-0.007(3)$
F1	$0.145(3)$	$0.103(3)$	$0.110(3)$	$0.041(2)$	$0.038(2)$	$-0.007(2)$
F2	$0.106(2)$	$0.116(3)$	$0.075(2)$	$-0.028(2)$	$0.0209(17)$	$-0.0357(18)$
F3	$0.076(2)$	$0.145(3)$	$0.078(2)$	$-0.030(2)$	$0.0309(16)$	$-0.0211(19)$
F4	$0.122(3)$	$0.153(3)$	$0.0570(18)$	$-0.022(2)$	$0.0204(17)$	$0.0248(19)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 5$	$1.347(6)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.348(5)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.502(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.348(7)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.402(5)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.392(6)$
$\mathrm{C} 3-\mathrm{C} 3{ }^{\mathrm{i}}$	$1.470(9)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.353(7)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$118.9(4)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6$	$121.0(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6$	$120.2(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$121.4(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.3
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1$	119.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.4(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$115.5(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 3{ }^{\mathrm{i}}$	$122.5(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3$	
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$122.0(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	$121.3(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.4
S 4	119.4

Symmetry codes: (i) $-x,-y+1,-z$.

sup-4

Fig. 1

Fig. 2

[^0]: \ddagger Additional correspondence author, email: jwxu@ciac.jl.cn.

